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ABSTRACT
AI systems cannot exist without data. Now that AI models (data
science and AI) have matured and are readily available to apply in
practice, most organizations struggle with the data infrastructure to
do so. There is a growing need for data engineers that know how to
prepare data for AI systems or that can setup enterprise-wide data
architectures for analytical projects. But until now, the data engi-
neering part of AI engineering has not been getting much attention,
in favor of discussing the modeling part. In this paper we aim to
change this by perform a mapping study on data engineering for AI
systems, i.e., AI data engineering. We found 25 relevant papers be-
tween January 2019 and June 2023, explaining AI data engineering
activities. We identify which life cycle phases are covered, which
technical solutions or architectures are proposed and which lessons
learned are presented. We end by an overall discussion of the pa-
pers with implications for practitioners and researchers. This paper
creates an overview of the body of knowledge on data engineering
for AI. This overview is useful for practitioners to identify solutions
and best practices as well as for researchers to identify gaps.

CCS CONCEPTS
• Software and its engineering; • Information systems→Data
structures; • Computing methodologies → Artificial intelli-
gence;
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1 INTRODUCTION
AI systems cannot exist without data [16]. To develop an AI system,
data needs to be collected and prepared to train the AImodel, see the
DATA cycle in Figure 1. But also when the model is in production,
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production data needs to be prepared to send it to the model and
get back predictions. This data can be structured tabular data or
unstructured data such as images, sound, text or video. In 2021,
Andrew Ng coined the term “data-centric AI” for “the discipline of
systematically engineering the data used to build an AI system”1,
i.e., AI data engineering.

Figure 1: The AI engineering life cycle [12]

Reis and Housley [36] define data engineering as “the develop-
ment, implementation, and maintenance, of systems and processes
that take in raw data and produce high-quality, consistent infor-
mation that supports downstream use cases, such as analysis and
machine learning. Data engineering is the intersection of security,
data management, DataOps, data architecture, orchestration and
software engineering.” Figure 2 shows the data engineering life
cycle, consisting of Ingestion, Transformation, Serving and Storage.
The definition of Reis and Housley is very broad, not just focused
on one AI engineering project as is the life cycle in Figure 1, and
also has a clear link to machine learning (thus AI).

Figure 2: The data engineering life cycle [36]

In the projects we do with industry we see that now AI models
have matured and are readily available to apply in practice, most
organizations struggle with the data infrastructure to do so. This can
1https://datacentricai.org/
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be on a project level: How to retrain this pre-trained model with our
own small dataset? How to create synthetic data? How to merge
different data sources? How to store and version data? How to
automate data pre-processing? But also on organization level: How
to integrate all available data from different systems into a central
“store”? How to protect sensitive data? How to deal with privacy
issues?How to clean data?How to design an organization-wide data
architecture that is fit for future AI developments? More and more
organizations directly ask for data engineers as the main driver
for their AI initiatives [27]. They struggle to find these employees,
because software engineers have not been trained on "big data" or
data architectures specifically and data scientists do not have the
required software engineering skills. Both disciplines rather focus
on the more attractive model development part of AI engineering.

Jarrahi et al. [21] also stress the importance of data-centric AI
(DCAI). They state that “the nature of ‘data work’ itself is not
necessarily new. However, over the years, the actual data work in
AI projects comes mostly from individual initiatives, and/or from
piecemeal and ad hoc efforts. A lack of attention to data excellence
and quality of data has resulted in underwhelming outcomes for AI
systems, particularly those deployed in high-stake domains such
as medical diagnosis. DCAI magnifies the role of data throughout
the AI life cycle and stretches its lifespan beyond the so-called
‘preprocessing step’ in model-centric AI.”

One could argue that to account for true DCAI the AI engineer-
ing life cycle should also be extended with undercurrents such as
“data architecture” and “DataOps”, analogue to Figure 2. These are
data-related activities that are not just relevant for one single AI en-
gineering project, but for the entire organization, or for all projects
being executed, or for all AI systems being maintained. This is in
fact also what we see in the projects we do with industry. They
know how to quickly get data for one machine learning experiment,
but not how to set up a data architecture for enterprise-scale AI
engineering.

This paper sets out to answer the question “How to do data
engineering for AI systems?” by means of a mapping study. For this
mapping study we formulated the following research questions:

• RQ1: Which data and AI engineering lifecycle phases are
covered?

• RQ2:Which technical solutions (tools/frameworks/platforms)
for AI data engineering are proposed?

• RQ3: Which architectures for AI data engineering are pro-
posed?

• RQ4: What are lesson learned on AI data engineering?

The mapping study identified 25 papers that explain data engi-
neering activities, tools, frameworks or architectures. By categoriz-
ing them and summarizing their solutions and lesson learned, the
paper creates an overview of the body of knowledge on data engi-
neering for AI. This overview is useful for practitioners to identify
solutions as well as for researchers to identify gaps.

The remainder of the paper is organized as follows. Section 2
provides related work on data engineering for AI systems. Section
3 explains the method used for the mapping study and how the 25
resulting papers were selected. Section 4 classifies the 25 papers
according to their meta-data, the type of solution they discuss and
the scope of the data engineering activities explained. Section 5

analyzes each of the four subquestions (RQ1 till RQ4). Section 6
discusses the overall research question and implications for practi-
tioners and researchers. The paper concludes with main findings
and future work.

2 RELATEDWORK
This section describes related work on data engineering within AI
engineering research.

Amershi et al. [3] is one of the first AI engineering case studies to
appear. The paper includes a machine learning workflow including
data-oriented steps. It describes data engineering challenges at
Microsoft but not really explains solutions. The paper shows that
already in 2019, data management and data discovery on a project-
level was a challenge for AI engineers. The case study does not
describe data engineering challenges on enterprise level.

Serban et al. [41] identified a set of best practices for AI engi-
neering from existing literature, including five best practices on
data:

(1) Use sanity checks for all external data sources
(2) Check that input data is complete, balanced and well dis-

tributed
(3) Write reusable scripts for data cleaning and merging
(4) Ensure data labelling is performed in a strictly controlled

process
(5) Make data sets available on shared infrastructure (private or

public)

More information on these best practices (and how to implement
them) might be taken from the papers that list them. Since Serban
et al. is a meta-research it is not included in our mapping study.

Several authors [7, 13, 19, 28, 30, 32, 39, 42] describe data chal-
lenges for AI systems, without offering explicit solutions. Each of
those papers does however stress the importance of data engineer-
ing for AI systems. Bosch et al. [7] present DataOps as part of the
AI engineering research agenda as a “a significant opportunity to
reduce ... overhead by generating, distributing and storing data
smarter in the development process”. Sambasivan et al. [39] state
that “Data quality carries an elevated significance in high-stakes AI
due to its heightened downstream impact, impacting predictions
like cancer detection, wildlife poaching, and loan allocations. Para-
doxically, data is the most under-valued and de-glamorised aspect
of AI.”. This paper complements previous work with an overview
of actionable solutions.

3 PAPER SELECTION
To select papers that answer our research questions on data engi-
neering for AI we used the process described by Kitchenham and
Charters [22]:

(1) Define inclusion and exclusion criteria
(2) Design query string
(3) Identify databases and other sources to search
(4) Select relevant papers based on title and abstract
(5) Select relevant papers based on full text
(6) Extend result set based on citations
(7) Classify resulting papers
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As a final step, we coded [38] the resulting papers to answer the
research questions. The following paragraphs describe each of the
steps in detail. The classification step is described in Section 4.

3.1 Inclusion and Exclusion Criteria
We used four inclusion criteria. Three of them are onmetadata of the
paper: the paper should be in English, peer-reviewed and from 2019
or later.We choose 2019 because the AI engineering publications are
all from that year or later, e.g., the seminal Microsoft case study by
Amershi et al. [4]. The fourth inclusion criterion is on the content of
the paper. The paper should explain data engineering activities, best
practices, tools, frameworks or data architectures in the context of
AI engineering (building production-ready AI systems). We exclude
books, theses (bachelor, master and PhD.) andmeta-research such as
systematic literature reviews or mapping studies. Furthermore we
excluded papers that only mention challenges, without providing
solutions.

3.2 Query String
As we are looking for data engineering for AI it makes sense to
include both these terms in the query. We choose to use the more
specific term “AI engineering” since we are interested in the soft-
ware engineering view on AI. We also included “data requirements”
and “data architecture” to surface papers that describe data arte-
facts (and thus possibly data activities) without mentioning “data
engineering”.

(data engineering || data requirements || data ar-
chitecture) & AI engineering

3.3 Source Selection and Query Execution
We selected five digital databases which index software engineering
venues plus Google Scholar. Furthermore we chose to try out Elicit,
an AI-powered research assistant. Elicit uses language models to
extract data from and summarize research papers. A search in Elicit
is based on a question that you are trying to answer, not on a query
string. We directly asked Elicit to come up with papers that answer
the question “How to do data engineering for AI engineering”. Elicit
generates papers in batches, and we stopped when a newly gen-
erated batch did not contain relevant titles anymore. We executed
the query string on each digital database (June 2023), resulting in
259 unique items in total2:

• Google Scholar (scholar.google.com) 182 items
• IEEE Xplore (ieeexplore.ieee.org) 5 items, 0 unique items
• ACM Digital Library (dl.acm.org) 8 items, 1 unique item
• Scopus (scopus.com) 3 items, 0 unique items
• DBLP (dblp.org) 16 items, 13 unique items
• ScienceDirect (sciencedirect.com) 7 items, 2 unique items
• Elicit (elicit.org) 64 items, 61 unique

3.4 Paper Selection and Citation Snowballing
For the 259 unique items we determined whether it is a peer-
reviewed paper (no book, thesis or meta-research) that describes
data engineering for AI.
2Dataset available online at https://dx.doi.org/10.13140/RG.2.2.17748.78725

Table 1: Excluded items

# Items

Book, thesis or meta-research 52
Not peer-reviewed 53
No data engineering activities 28
No AI engineering - Software engineering 3
No AI engineering - Data Science 53
No AI engineering - AI governance 10
No AI engineering - Education 5
No AI engineering - Infrastructure, Hardware 14
No AI engineering - AI4SE 5
Only mentions, no explanation 7
Only challenges, no solutions 10
Total excluded 240

Table 2: Filtering publications on data engineering for AI

Query Inclusion References

Google Scholar 182 11 15
ScienceDirect 2 0 0
ACM DL 1 0 0
DBLP 13 1 1
Elicit 61 7 9

TOTAL 259 19 25

In total we excluded 240 items. With those items we performed
card sorting on the reason for exclusion, resulting in eleven cate-
gories, see Table 1. The card sorting serves as a soundness check of
the exclusion process (did we exclude for the right reason?).

The selection process resulted in 19 (= 259 - 240) papers.
With the 40 papers that were initially included based on title and

abstract, we also performed snowballing according to the guidelines
provided by [48]. We checked all the references in the 40 papers, but
also checked all citations of these 40 papers with Google Scholar.
We repeated this snowballing process until no new papers were
added. The complete snowballing process has added 6 new papers
to this final set, resulting in 25 papers in total (see Table 2).

4 PAPER CLASSIFICATION
The resulting set of 25 papers was classified according to different
dimensions. This section explains the different classifications.

4.1 Classification by Meta-Data
To indicate the background of the selected papers we classified
them by the following meta-data.

(1) Author affiliation (Aff. = University, Company, Public Orga-
nization, Research Center)

(2) Author country;
(3) Year of publication;
(4) Number of pages (#p);
(5) Number of citations (#cit.);
(6) Keywords;
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Figure 3: Word cloud of the keywords from the 25 selected
papers

(7) Focus on software engineering (SE) or focus on data science
(DS).

4.2 Classification by Scope of Data Engineering
To indicate the scope of data engineering activities explained in
each paper we classified them according to the following categories.

(1) Data pipeline for training AI systems (TP);
(2) Data pipeline for serving data to AI systems in production

(PP);
(3) System-wide AI data architecture (DA);
(4) Enterprise-wide AI data architecture (EDA);

4.3 Classification by Type of Data Engineering
Solution

To indicate what type of guidance on data engineering for AI the
paper provides we classified them according to the following cate-
gories.

(1) Technical solution (tool, platform, library, etc.);
(2) Architecture;
(3) Best practices;
(4) Case study;
To provide better guidance for practitioners, we also indicate

for each paper which of the following empirical validation of the
provided solutions was done.

(1) Case study in industry;
(2) Validation within author’s company;
(3) Experiments;
(4) Demo applications or implementations;
(5) No empirical validation.

4.4 Classified Papers
Table 3 shows how each of the 25 selected papers classifies on
metadata, scope, and solution type.

What stands out in this table is that the set of 25 papers comes
from a mix of industry and academics, with only 9 being purely
academic. Most papers (15 out of 25) come from European countries,
with a large number from Germany (6) and Sweden (3). Note that
the 3 papers from Sweden seem to come from the same research
group. Most papers (17) focus on the software engineering perspec-
tive, which is not surprising, since we specifically selected on “AI
engineering”. With respect to the types of solutions discussed in the
papers, all of them are well represented. Furthermore, most papers
contain some form of empirical evaluation of their solutions.

With respect to the scope of activities explained in the paper,
eleven focus on the training pipeline (TP) and seven focus on the
production pipeline (PP). Only four papers focus on system-level
data engineering and only three on enterprise-level data engineer-
ing. This means most papers take quite a narrow definition of
data engineering: setting up a data pipeline for a machine learning
model.

With respect to the keywords, the list is long and quite diverse,
see the word cloud in Figure 3. Papers DE1, DE2 and DE14 are
without keywords, the other papers have selected between three
and ten (DE16) keywords. DE13, DE15, DE16, DE17, DE21 and DE24
do not mention data in their keywords, but they do mention AI
or machine learning. The other papers all selected keywords that
include “data”:

• data processing: DE3, DE4
• data engineering: DE5, DE12
• DataOps: DE6
• data pipelines: DE3 (pipeline), DE6, DE9
• data technologies: DE6
• data management, data democratization, data governance,
data ecosystem: DE7

• data quality: DE8, DE23
• data errors: DE8
• data validation: DE8
• data transparency: DE10
• data cleaning: DE10
• data sovereignty: DE11
• data-driven development: DE18
• data integrity: DE19
• hierarchical dataset, dataset design: DE20
• data collection standard, data synchronization: DE20
• Data-as-a-Service, DaaS: DE22
• synthetic data: DE25

This list of keywords already shows that terminology within the
25 papers is not standardized and that many different aspects of
data engineering for AI are being considered. We will analyze this
in more detail in the next section, related to the research questions.

5 DATA ENGINEERING FOR AI SYSTEMS
In this section we discuss our findings related to each of the four
research questions. To answer the research questions, the full text
of each paper was coded according to 1) the life cycle phases that
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Table 3: Papers on data engineering for AI

ID Ref. Year Affiliation Country #p #cit. SE/DS Scope Type Validation

DE1 [8] 2019 Company (Google) USA 12 238 SE PP Technical solution Case study
DE2 [11] 2019 University Germany 12 23 DS PP Technical solution Experiments
DE3 [15] 2019 University USA 4 4 SE PP Technical solution Demo
DE4 [49] 2019 Company (Fujitsu) Japan 8 41 SE DA Architecture Demo
DE5 [1] 2020 University USA, Sri Lanka 9 5 SE TP Technical solution Experiments
DE6 [29] 2020 Univ. + Comp. (Ericsson) Sweden 10 66 SE EDA Best practices Company
DE7 [16] 2021 Company (Robert Bosch) Germany 9 36 SE EDA Architecture Company
DE8 [24] 2021 Univ. + Comp. (Ericsson) Sweden 10 13 SE PP Best practices Company
DE9 [35] 2021 Univ. + Research C. Sweden 10 1 SE PP Best practices Case study
DE10 [45] 2021 Research Center Qatar 9 2 DS TP Architecture No
DE11 [2] 2022 Research C. + Univ. Germany, Spain 12 0 SE TP Case study Case study
DE12 [9] 2022 Univ. + Public Org. USA 6 1 DS TP Case study Case study
DE13 [10] 2022 University Australia 6 1 SE TP Best practices No
DE14 [14] 2022 Univ. + Research C. Austria 11 11 SE PP Technical solution Experiment
DE15 [17] 2022 Research Center Germany 10 5 SE DA Best practices No
DE16 [31] 2022 University Finland 8 0 SE DA Case study Case study
DE17 [33] 2022 University UK 11 3 SE DA Architecture Demo
DE18 [34] 2022 Research Center Germany 8 1 SE TP Best practices Demo
DE19 [40] 2022 Research Center Norway, Spain 7 2 SE EDA Architecture Case study
DE20 [46] 2022 Research Center China 6 1 DS TP Architecture Demo
DE21 [47] 2022 University Austria 11 4 SE TP Architecture No
DE22 [6] 2023 University Italy 19 0 DS PP Architecture Demo
DE23 [20] 2022 University India, Vietnam 14 1 DS TP Technical solution Demo
DE24 [23] 2023 Univ. + Comp. (IBM) Germany 10 49 SE TP Architecture Interview
DE25 [37] 2023 Univ. + Comp. (Microsoft) USA 17 0 DS TP Technical solution Experiments

SE=software eng., DE=data science, TP/PP=training/production pipeline, DA/EDA=system/enterprise-wide data architecture

are described; 2) the technical solutions that are described; 3) the
architecture pictures it contains; 4) the lessons learned it contains.

5.1 RQ1: Which Data and AI Engineering Life
Cycle Phases Are Covered?

To map the 25 selected papers to life cycle phases, we coded them
with the AI engineering life cycle phases from Figure 1 (DATA,
ML, DEV and OPS) and the data engineering life cycle phases from
Figure 2 (Generation, Ingestion, Transformation, Serving). When
the paper does not focus on one or more specific life cycle phase(s),
we coded it with “All”. Table 4 shows the division of the papers
over the life cycle phases.

Conclusion. Not surprisingly the majority of papers cover at
least the DATA phase of the AI engineering life cycle. But eight
of the papers focus more on the DEV and/or OPS part of the AI
engineering life cycle. Out of them, five papers specifically focus
on data validation in production (the Serving phase of the Data
Engineering life cycle).

5.2 RQ2: Which Technical Solutions for AI
Data Engineering Are Proposed?

As can be seen in Table 3, seven of the papers discuss technical
solutions for AI data engineering. In this section we discuss each
of the seven proposed solutions in more detail.

[DE1] Breck et al. [8] present a “data validation system that is
designed to detect anomalies specifically in data fed into machine

Table 4: RQ1: Which life cycle phases are covered?

AI Eng. Data Eng. Papers

DATA Generation DE18, DE20, DE23, DE25
DATA Transformation DE10, DE12
DATA All DE6, DE21
DATA+ML Transformation DE3
DATA+ML+DEV All DE17
DEV All DE4
DEV+OPS All DE9, DE19
OPS Serving DE1, DE2, DE8, DE14, DE22
All All DE5, DE7, DE11, DE13, DE15,

DE16, DE24

learning pipelines. This system is deployed in production as an
integral part of TFX – an end-to-end machine learning platform at
Google.” They discuss the challenges they faced in developing the
system and the techniques they used to address them, including
design choices that were made. They also present three case studies
at Google to illustrate the benefits of the data validation system in
production.

[DE2] Derakshan et al. [11] propose a “platform for continuously
training deployed machine learning models and pipelines that adapts
to the changes in the incoming data.” Their platform uses tech-
niques such as proactive training, online statistics computation
and dynamic materialization to reduce (re)training and deployment
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costs. They include evidence from experiments, with two different
machine learning pipelines.

[DE3] Frost et al. present “AI Pro, an open-source framework
for data processing with Artificial Intelligence (AI) models.” With
AI Pro users can generate a data pipeline from a configuration
file through a user friendly web interface. For advanced users and
core developers, there is a command line interface for in-depth
operations with finer-grained control. They demonstrate AI Pro
with two demo scenarios.

[DE5] Abeykoon et al. [1] developed a “high performance Python
API with a C++ core to represent data as a table and provide
distributed data operations.” Their PyCylon solution bridges ETL
pipelines in Python (as mostly used by data scientists) with high
performance compute kernels in C++. They conducted experiments
to proof the performance of PyCylon.

[DE14] Foidl et al. [14] collected a catalogue of 36 “data smells”
in a multi-vocal literature review and implemented tool support to
detect these data smells. They applied the tools to 246 Kaggle datasets
to evaluate them. As opposed to the data anomalies detected by
the system of [DE1] presented above, these data smells are broader,
since smells also include “potential data quality issues”.

[DE23] Jariwala et al. [20] demonstrate the use of the IBM Data
Quality for AI Toolkit to check training data in a machine learning
setting. They include a workflow how to call the IBM API and show
the results of several included data quality metrics on open source
datasets.

[DE25] Sabet et al. [37] introduce “a scalable Aerial Synthetic
Data Augmentation (ASDA) framework tailored to aerial autonomy
applications.” They demonstrate the ASDA framework by generat-
ing data for landing pad detection in the Seattle simulation scene.
Although this is a very specific technical solution, the usage of
synthetic datasets is of course not limited to aerial autonomy appli-
cations.

Conclusion. The selected papers contain a diverse set of tech-
nical solutions, ranging from synthetic data generation (DE25),
through data validation tools (DE1, DE14, DE23), through data pro-
cessing frameworks (DE3, DE5), to deployment platforms (DE2).
In that way the solutions presented together cover the complete
AI engineering and data engineering life cycles, although most
solutions focus on one single life cycle phase (see Table 4). The
exception is [DE5] that does not cover one specific life cycle phase
and is the only paper that covers the DEV phase of AI engineering.

5.3 RQ3: Which Architectures for AI Data
Engineering Are Proposed?

As can be seen in Table 3, nine of the papers discuss architectures
for AI data engineering. In this section we discuss each of the nine
architectures in more detail.

[DE4] Yokoyama [49] propose a multi-layer architectural pattern
for machine learning systems that separates the business logic from
the inference engine and data processing. Furthermore, it separates
the user interface from the data collection and the data lake from the
database. They demonstrate their architectural pattern by designing
a chatbot system.

[DE7] Gröger [16] calls for a data ecosystem for industrial enter-
prises, see Figure 4. That ecosystem contains a specific role for data

engineers and data engineering as part of the data democratization
challenge: “making all kinds of data available for AI for all kinds of
end users across the entire enterprise”. Gröger suggests to address
this challenge with an enterprise data catalog that provides com-
prehensive metadata management across all data lakes and other
data sources. This would enable self-service use of data.

[DE10] Thirumuruganathan et al. [45] present a reference archi-
tecture for automated annotations of data. They describe the key
components of this system architecture. Implementing a proof-of-
concept remains future work.

[DE17] Paleyes et al. [33] propose “Flow-Based Programming as
a paradigm for creating Data Oriented Architecture (DOA) applica-
tions.” They compared the flow-based programming (FBP) paradigm
to the Service-Oriented Paradigm (SOA) by implementing four data-
driven applications in both paradigms and measuring evolution of
the codebase through pre-defined metrics.

[DE19] Sen et al. [40] devised a “de-centralized edge-to-cloud
architecture” with machine learning pipelines for erroneous data
repair and detection of deviations in sensor data. They analyze their
proposed architecture in two different industrial case studies.

[DE20] Wang et al. [46] implement a hierarchical dataset with
unified annotation rules. They use one example scenario to compare
a hierarchical dataset created from three single datasets with the
original single-source dataset.

[DE21] Warnett and Zdun [47] list architectural design decisions
(ADDs) for the machine learning workflow from a gray literature
study. Their replication package contains in an ADD model with
UML diagrams of all ADDs and their relations.

[DE22] Azimi and Pahl [6] present a layered Data-as-a-Service
(DaaS) quality management architecture. Their framework focuses
on input data quality and links it to machine learned data service
quality. They demonstrate their framework with a traffic manage-
ment use case.

[DE24] Kreuzberger et al. [23] depict an “end-to-end MLOps ar-
chitecture and workflow with functional components and roles”. The
workflow contains a separate data engineering zone and data(Ops)
engineer is a separate role (apart from e.g., software engineer, data
scientist or even ML engineer). According to them a data engineer
“builds up and manages data and feature engineering pipelines” and
“ensures proper data ingestion to the databases of the feature store
system”. This indicates that their architecture/workflow has the
scope of one single ML project.

Conclusion. Most architectures presented focus on (parts of
a) system architecture (DE4, DE10, DE17, DE20, DE22) or the ML
pipeline (DE21, DE24). Only papers DE7 and DE19, contain a dia-
gram for enterprise-wide data architectures, of which DE19 focuses
on IoT data only. The data ecosystem from DE7 contains a compre-
hensive overview of this enterprise data landscape, including IoT
data sources, see Figure 4.

5.4 RQ4: What are Lessons Learned on AI Data
Engineering?

As can be seen in Table 3, nine of the papers discuss case studies or
best practices for AI data engineering. In this section we discuss
each of the nine papers in more detail.
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Figure 4: A data ecosystem for industrial enterprises [16]

[DE6] Raj et al. [29] derive a definition of DataOps from litera-
ture including the main components identified. According to their
analysis, DataOps can be defined as “an approach that accelerates
the delivery of high quality results by automation and orchestration
of data life cycle stages.” They describe eight DataOps use cases at
Ericsson and derived a five stage DataOps evolution from them. For
each stage they define requirements, which can also be read as best
practices.

[DE8] Lwakatare et al. [25] conducted action research at Ericsson
for training data validation. Based on their research, they propose
a data validation framework that considers multiple levels of data
validation checks (feature, dataset, cross-dataset, data stream) and
provision of feedback. Their research also identified three best
practices: 1) define data quality tests at all four levels, 2) provide
actionable feedback and suggest mitigation strategies, 3) treat data
errors with similar rigor as code.

[DE9] Raj et al. [35] conducted a multiple-case study into six
data pipelines from commercial software-intensive systems at three
companies. They describe and explain seven determinants for data
pipelines: 1) Big Data, 2) data preprocessing, 3) data quality, 4) data
storage requirements, 5) data pipeline elements, 6) performance
efficiency, 7) continuous monitoring and fault detection. These
determinants are important factors to consider when implementing
a data pipeline.

[DE11] Altendeiterung et al. [2] conducted a twelve-month action
research at Mondragon on data-sovereign AI pipelines. They explicitly
list ten lessons learned: 1) need for data traceability, 2) need for
an independent trustee, 3) need for quality-driven data sharing,
4) need for a data catalog, 5) need for real-time support, 6) need
for a separation of control and data plane, 7) need for access and
usage control enforcement, 8) need for standardization, 9) need for
a common definition of user roles, 10) need for a trusted and secure
deployment environment.

[DE12] Chattopadhyay et al. [9] describe an experiment where
they used six different ways to transform a rainfall dataset from a
five-minute span to a single value (baseline, mean, median, mode,
maximum, minimum). They call this choice a “data engineering
decision” and argue that the choice made impacts model results
quantitatively and qualitatively.

[DE13] Cheng and Long [10] propose Federated Learning Oper-
ations (FLOps) as a methodology for developing cross-silo federated
learning systems. They describe a life cycle with three phases and
fourteen activities (one of which is data engineering). They also
provide three best practices: 1) metadata engineering to create Data

Interface Abstractions (DIAs) for models, 2) dual deployment of
models and DIAs, 3) check points between phases.

[DE15] Hasterok and Stompe [17] present the Process Model for
AI Systems Engineering (PAISE®) as an extension of ISO/IEC 15288
with AI engineering. PAISE® specifies its own procedures for ML
component development and data provisioning. The data provi-
sioning process facilitates the development of datasets as separate
components in the system. It also is a feedback loop, where datasets
can be updated based on the monitoring of the system.

[DE16] Niemelä et al. [31] propose an architecture for a learn-
ing analytics system (LAOps) in which they combine MLOps and
privacy-aware cryptographic data storage. They describe the LAOps
implementation they currently have at Tampere University.

[DE18] Petersen et al. [34] introduce a data-driven workflow for
developing qualitative datasets in automative systems engineering.
They showcase this process by “curating a data pool consisting of
different available data sources that have to be integrated to cover
as many driving situations as possible.”

Conclusion. The lessons learned from the above nine papers
are quite diverse and with different scope. DE6 about DataOps is
probably the most broad one together with DE15 about PAISE®
(process model for AI engineering), whereas DE12 describes just
one data wrangling step in one single project. Depending on the
context of the AI engineering project, different papers apply: DE11
and DE13 for federated learning, DE16 for learning analytics and
DE18 for automotive systems engineering. DE8 and DE9 focus on
one specific part of the life cycle: automated training data valida-
tion (DE8) and data pipelines for serving data to machine learning
models in production (DE9).

6 DISCUSSION
This section discusses the findings in light of the overall research
question “How to do data engineering for AI systems?”

6.1 Threats to Validity
Most threats to validity in such a mapping study relate to researcher
bias in selecting and coding papers. We mitigated this by 1) fol-
lowing the guidelines suggested by Kitchenham and Charters [22],
Saldãna [38] and Wohlin [48]; 2) documenting and reviewing all
steps we made; 3) using existing life cycle models and definitions
for the coding; 4) making available the entire dataset, including
selection and coding for other researchers to validate our results.

Note that because we specifically searched for “AI engineering”
in the query string, we might have missed papers that refer to AI en-
gineering with other wording. We mitigated this by also searching
with AI-based tool Elicit (61 new papers of which 7 were included
in the result set) as well as by snowballing from the other selected
papers.

6.2 Defining Data Engineering for AI Systems
Before we can answer the question “How to do AI data engineer-
ing?”, we must first answer the question “What is AI data engineer-
ing?”. All 25 selected papers take a different angle. Data engineering
might refer to one single task or step in an AI engineering project,
a discipline within software engineering or data science, or an
enterprise-wide competency, see also Table 2 (TP, PP, DA or EDA).
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Out of all papers, DE12 takes the most narrow view on data
engineering. Chattopadhyaya et al. [9] write about data engineering
decisions for AI-based applications. They use this rather umbrella
term to indicate the decision how they should convert a timestamp
dataset into an interval-based dataset: take the mean, the mode, the
maximum or the minimum for that interval.

Only 4 out of 25 papers actually define what they mean by data
engineering. Paper DE5 by Abeykoon et al. [1] defines data en-
gineering as “The complex process of transforming raw data to a
form suitable for analytics”. Paper DE6 by Raj et al. [29] has a rather
fuzzy definition of data engineering as a step that “performs two
different operations at the high level, which include data collection
and data ingestion”. Paper DE7 by Gröger [16] defines data engi-
neering as “modelling, integrating and cleansing of data.” Paper
DE13 by Cheng and Long [10] says “the raw data in each entity is
extracted, transformed, and prepared for model training”. These
definitions are all also much more narrow than the definitions from
Andrew Ng and Reis and Housley as given in the introduction.

To get a complete picture of data engineering for AI systems,
one should combine the life cycles in Figure 1 and Figure 2. In that
way, one has both a picture of how AI engineering connects to data
as well as how data engineering connects to AI. We did not find any
comprehensive work that already does this and only three papers
that take a similar enterprise-level view on data engineering (DE6,
DE7 and DE19).

6.3 Implications for Practitioners
The mapping of the selected papers to life cycle phases (RQ1, see
section 5.1) and type of solutions they provide (RQ2 till RQ4, see sec-
tion 5.2 till 5.4) provides guidance to practitioners which solutions
to select for which project or activity. Running our mapping study,
we also had the following observations on AI data engineering that
could be useful for practitioners.

Big Data. During snowballing, we excluded a number of papers
on data engineering for Big Data, that did not have an explicit refer-
ence to AI systems. However, those papers might contain valuable
solutions for both researchers and practitioners that also holds for
AI systems, as these systems are mostly Big Data systems as well.
That kind of analysis was out of scope for this paper and might be
a topic for a future mapping study: “How to do data engineering
for Big Data?”

Data quality. A number of papers relate to data quality or data
validation. There might be an interesting body of knowledge (and
tools) on those topics that was out of scope for our mapping study.
Zhang et al. [50] list several methods for data testing in their survey
on machine learning testing. The concept of data smells [14, 43] is
also important to consider in this context as these indicate data qual-
ity issues that might lead to machine learning problems, different
from data errors (see DE14 [14]).

Grey literature. In our mapping study we included only peer-
reviewed papers. However, we found a number of other interesting
resources: 1) The original post of Figure 1 [12] that already defined
the DATA cycle as in fact being a DataOps process, 2) the blogs
and whitepapers on DataOps referenced in DE6 [29], 3) the book
“Fundamentals of Data Engineering” [36] from which we borrowed

Figure 2, 4) other books such as “Data Fabric and Data Mesh Ap-
proaches with AI” [18] and “Practical DataOps: Delivering agile
data science at scale” [5]. This means that practitioners should
definitely consider sources from grey literature on DataOps and
modern data architectures (such as data meshes and data fabrics).

Open source tooling. The open source tooling landscape for data
is becoming bigger and bigger, see also the online blog post “The
State of Data Engineering”3. These kind of tools are necessary to
achieve higher levels of DataOps, see DE6 [29].

Data spaces. Some AI data engineering projects require data
sharing between different organizations or entities. To support
federated learning and data sovereignty several technical solutions
such as Gaia-X, FIWARE and the International Data Space have been
built up. Paper DE11 by Altendeiterung et al. [2] investigates how
to integrate such solutions with AI pipelines, but we recommend to
also keep an eye on the evolution of the data space solutions, since
they are fairly new.

Domain-specific data engineering. Two domains that stood out
in our mapping study are data engineering for Internet-of-Things
(IoT) and data engineering for automotive. There might be more
literature or guidance on AI data engineering if one dives into a
specific domain.

Synthetic data. Paper DE25 by Sabet et al. [37] describes syn-
thetic data generation. That is a topic that might not be relevant for
all AI engineering projects, but if it is, we would like to point out
that there is a whole body of knowledge (and tools) about synthetic
data generation specifically that can be looked into by practitioners.

6.4 Implications for Researchers
The mapping of the selected papers to life cycle phases (RQ1, see
section 5.1) and type of solutions they provide (RQ2 till RQ4, see
section 5.2 till 5.4) provides guidance to researchers to see what is
already there and what is still missing. Running our mapping study,
we also had the following observations on AI data engineering that
could be useful for researchers.

Data engineering. Tebernum et al. [44] developed a “data en-
gineering reference model (DERM) which outlines the important
building blocks for handling data along the data lifecycle.” They
aim to bridge between data engineers and software engineers by
providing a common ground for engineering data-intensive applica-
tions. They view data engineering as a sub-discipline of data science
(“preparing data for data scientists”). The AI engineering research
community could benefit from integrating with the data science
research community on the data engineering topic. The DERM
presented by Tebernum et al. could serve as a common ground also
for this purpose. Tebernum et al. also show ample opportunities
for future data engineering research.

DataOps. Paper DE6 by Raj et al. [29] points to DataOps as an
overall process to automate and orchestrate data life cycle stages.
The large amount of references to grey literature they used indicates
that DataOps is not receiving enough attention in research yet. In
line with the evolution from DevOps to MLOps, there is also a
3https://lakefs.io/blog/the-state-of-data-engineering-2023/
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need to evolve DataOps as a separate research field. This means
that researchers should not consider data engineering as a single
activity in a machine learning project, but as an approach that
accelerates the entire enterprise data life cycle.

Data-Oriented Architecture (DOA). Paper DE17 by Paleyes et
al. [33] introduces the term DOA as opposed to Service-Oriented
Architecture (SOA). DOA seems an interesting paradigm for AI
data engineering, but a quick search in Google Scholar only yields
23 articles that relate to DOA. More research is needed to establish
if and how DOAs can be used to solve AI engineering challenges.

Enterprise-wide data architectures. The previous section points
practitioners to books about data fabrics and data meshes. These
are new concepts for managing data within an enterprise. The
question how to effectively engineer AI systems making use of
these concepts, remains open.

Data spaces and federated learning. The same holds for data
spaces and federated learning. Paper DE11 by Altendeiterung et
al. [2] investigates how to combine IDS with AI pipelines, but
more research is needed on combining data spaces with federated
learning.

Production data. Most papers focus on data engineering for train-
ing data. Now that AI has matured and more and more projects go
into production, we need more background on how to engineer pro-
duction data pipelines, how to validate andmonitor production data,
and how to set up enterprise-wide production data architectures.

Open source tooling. Open source tooling could also be a vehicle
for researchers to transfer results to practitioners. In the area of
AI engineering, open source tooling is wide-spread in industry, so
researchers can easily integrate their data engineering solutions.

Knowledge engineering. Mattioli et al. [26] contrasts data-driven
AI and knowledge-driven AI and argue that a hybrid approach is
needed to build trustworthy AI systems. They point to the disci-
pline of knowledge engineering, separate from data engineering.
According to them, “knowledge engineering (KE) is the process of
understanding and then representing human knowledge in data
structures, semantic models (conceptual diagram of the data as it re-
lates to the real world) and heuristics.” In that way, it complements
data engineering as it creates the data structures that data engineer-
ing deals with. This paper specifically focuses on data-driven AI
engineering, but it is an interesting question how to combine this
with knowledge-driven AI engineering.

Systems engineering. We focused our mapping study on AI en-
gineering, thinking it to be a discipline within software engineer-
ing. However, DE15 about PAISE® and DE18 about a data-driven
workflow describe AI engineering as a discipline within systems
engineering. Then the data engineering part is not about enterprise-
wide data, but about data within one system (e.g., device or ma-
chine). The AI engineering research community could benefit from
integrating with the AI system engineering research community,
as they might run into similar data-related challenges.

7 CONCLUSION
In this paper we created an overview of existing literature on data
engineering for AI systems from an AI engineering perspective.

We found that most papers focus on engineering training or
production pipelines for AI systems, but that they lack overall data
architecture guidance for AI systems or the AI-driven enterprise.
For software engineers and software engineering researchers this
means that after DevOps and MLOps, now DataOps (and the in-
tegration between the three) is a new important topic to address.
There is a strong need for frameworks, best practices, but also open
source tools to support practitioners in implementing them. This
paper provides a first overview of what is already there.

Future work remains to update the analysis, preferably also
include available grey literature and books, and learn from case
studies what is missing in practice. Our ultimate goal is to develop
a data engineering toolbox for AI engineers, that includes both
tooling to support project-level data pipelines as well as enterprise
level data architectures. And, most importantly, an integrated data
engineering and AI engineering approach.
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